Unit04-05-Sample Quiz

Multiple Choice
Identify the choice that best completes the statement or answers the question.

____ 1. The function, \(f(x) = ax + c \), is graphed at the right.

What is the range of the function \(f(x) \) shown?

a. Range: \(f(x) > c \)
b. Range: \(f(x) > a \)
c. Range: \(f(x) < b \)
d. Range: \(\{ \text{ALL REALS (\(\mathbb{R} \))} \} \)

____ 2. Consider the function, \(f(x) = 2^x + 2 \), which is the only number below that is not part of the range of the function \(f(x) \)?

a. \(-2\)
b. \(3\)
c. \(4\)
d. \(6\)
3. The function, \(f(x) = ax + c \), is graphed at the right.

What is the complete set of interval(s) of increase for the function \(f(x) \)?

- a. \((c, \infty)\)
- b. \((b, \infty)\)
- c. \((\infty, \infty)\)
- d. \(\emptyset\); Empty Set

4. The function, \(f(x) = x^3 + 6x^2 + 9x + 3 \), is graphed at the right.

What is the complete set of interval(s) of decrease for the function \(f(x) \)?

- a. \((-\infty, -3) \cup (1, \infty)\)
- b. \((-3, -1)\)
- c. \((-1, 3)\)
- d. \((-\infty, \infty)\)
5. The function, \(h(x) = (\frac{1}{2})^x - 4 \), is graphed at the right.

As \(x \to \infty \), determine \(h(x) \to _____ \)

(i.e. As \(x \) approaches infinity what does \(h(x) \) approach?)

\[\begin{align*}
\text{a. } h(x) &\to -\infty \\
\text{b. } h(x) &\to \infty \\
\text{c. } h(x) &\to \frac{1}{2} \\
\text{d. } h(x) &\to -4
\end{align*} \]

6. Which is the only function that has the property as \(x \to -\infty \), \(f(x) \to 0 \)?

\[\begin{align*}
\text{a. } & \\
\text{b. } & \\
\text{c. } & \\
\text{d. } &
\end{align*} \]

7. Consider the function, \(m(x) = 2^x - 4 \). Determine the \textbf{y-intercept} for the function \(m(x) \).

\[\begin{align*}
\text{a. } & (0, -4) \\
\text{b. } & (2, 0) \\
\text{c. } & (-3, 0) \\
\text{d. } & (0, -3)
\end{align*} \]
8. Which is the only function that has a different x-intercept than the rest?

 a. \(a(x) = 2^x - 4 \)
 b. \(b(x) = 3^x - 6 \)
 c. \(c(x) = 3^x - 9 \)
 d. \(d(x) = -2^x + 4 \)

9. Which function below has an asymptote at \(y = b \)?

 a. \(f(x) = a \cdot b^x + c \)
 b. \(g(x) = c \cdot b^x + a \)
 c. \(h(x) = b \cdot a^x + c \)
 d. \(k(x) = a \cdot c^x + b \)

10. Which function below has the greatest average rate of change from \(x = 0 \) to \(x = 1 \)?

 a. \(a(x) = 2^x \)
 b. \(b(x) = 2^x + 3 \)
 c. \(c(x) = -3^x + 2 \)
 d. \(d(x) = 3^x - 2 \)