Name all of the properties of a parallelogram and its diagonals.

1. Opposite Sides are parallel
2. Opposite Sides are congruent
3. Opposite Angles are congruent
4. Consecutive Angles are supplementary
5. Diagonals bisect each other

The properties of a rectangle and its diagonals:

1. All angles are right
2. Opposite Sides are parallel
3. Opposite Sides are congruent
4. Diagonals bisect each other
5. Diagonals are congruent

The properties of a rhombus and its diagonals:

1. Opposite angles are congruent
2. Opposite Sides are parallel
3. All Sides are congruent
4. Consecutive angles are supplementary
5. Diagonals are perpendicular

The properties of a square and its diagonals:

1. All angles are right
2. Opposite Sides are parallel
3. All Sides are congruent
4. Diagonals bisect each other
5. Diagonals are perpendicular
6. Diagonals bisect angles
7. Diagonals are congruent
Find the value of \(x \) in each diagram below using properties of quadrilaterals.

1. \((3x + 10)^\circ + (8x + 5)^\circ = 180 \)
 \[
 \frac{11x + 15}{11} = 165
 \]
 \[
 x = 15
 \]

2. \(8x + 2 = 6x - 12 \)
 \[
 -6x
 \]
 \[
 2x + 2 = -12
 \]
 \[
 2x = -14
 \]
 \[
 x = -7
 \]

3. \(x = 40^\circ \)

4. \(AC = 9x + 4 \)
 \[
 AC = 6x + 16
 \]
 \[
 7x + 4 = 6x + 16
 \]
 \[
 x = 12
 \]

5. \(x^2 + x^2 = 8^2 \)
 \[
 \frac{2x^2}{2} = 64
 \]
 \[
 \sqrt{x^2} = 8 \sqrt{2}
 \]
 \[
 x = \sqrt{32} = 8 \sqrt{2}
 \]
 \[
 \approx 5.66
 \]

6. \((2x)^2 + (x)^2 = 45^2 \)
 \[
 4x^2 + x^2 = 2025
 \]
 \[
 5x^2 = 2025
 \]
 \[
 x = \sqrt{405} = 9 \sqrt{5}
 \]
 \[
 x = 9 \sqrt{5} \approx 20.12
 \]

M. Winking (Section 1-9)
Plot points A(-3, -1), B(-1, 2), C(4, 2), and D(2, -1).

1. What specialized geometric figure is quadrilateral ABCD? Support your answer mathematically.
 - Quadrilateral ABCD is a parallelogram.
 - Slope AB = 3/2 = Slope DC
 - Slope BC = 0 = Slope AD

2. Draw the diagonals of ABCD. Find the coordinates of the midpoint of each diagonal. What do you notice?
 - Midpoint BD
 \[\left(\frac{-1 + 2}{2}, \frac{-1 + (-1)}{2} \right) = \left(\frac{1}{2}, -1 \right) \]
 - Midpoint AC
 \[\left(\frac{-3 + 4}{2}, \frac{-1 + 2}{2} \right) = \left(\frac{1}{2}, \frac{1}{2} \right) \]
 - They are the same & thus bisect each other.

3. Find the slopes of the diagonals of ABCD. What do you notice?
 - Slope BD
 \[M = \frac{-1 - 2}{2 - (-1)} = \frac{-3}{3} = -1 \]
 - Slope AC
 \[M = \frac{2 - (-1)}{4 - 2} = \frac{3}{2} \]
 - Not perpendicular.

4. The diagonals of ABCD create four small triangles. Are any of these triangles congruent to any of the others? Why or why not?
 - \(\triangle AEM \cong \triangle CMF \) by SAS
 - \(\triangle BMC \cong \triangle DMA \) by SAS

Plot points E(1, 2), F(2, 5), G(4, 3) and H(5, 6).

5. What specialized geometric figure is quadrilateral EFHG? Support your answer mathematically using two different methods. Rhombus
 - FE = FH = HG = EG = \(\sqrt{1^2 + 3^2} = \sqrt{10} \)

6. Draw the diagonals of EFHG. Find the coordinates of the midpoint of each diagonal. What do you notice?
 - Midpoint EF
 \[\left(\frac{1 + 2}{2}, \frac{2 + 3}{2} \right) = \left(\frac{3}{2}, \frac{5}{2} \right) \]
 - Midpoint FG
 \[\left(\frac{2 + 4}{2}, \frac{5 + 3}{2} \right) = \left(3, 4 \right) \]
 - They are the same.

7. Find the slopes of the diagonals of EFHG. What do you notice?
 - Slope EF
 \[M = \frac{2 - 5}{2 - 1} = -3 \]
 - Slope FG
 \[M = \frac{4 - 2}{2 - 1} = 2 \]
 - Opposite reciprocal perpendicular.

8. The diagonals of EFHG create four small triangles. Are any of these triangles congruent to any of the others? Why or why not?
 - \(\triangle FME \cong \triangle FMH \cong \triangle CMH \cong \triangle GME \) by SSS
Plot points P(4, 1), W(-2, 3), M(2,-5), and K(-6, -4).

9. What specialized geometric figure is quadrilateral PWKM? Support your answer mathematically.

A KITE: \(WK = \sqrt{4^2 + 7^2} = \sqrt{16 + 49} = \sqrt{65} = KM \)
\(WP = \sqrt{4^2 + (-6)^2} = \sqrt{16 + 36} = \sqrt{52} = PM \)

10. Draw the diagonals of PWKM. Find the coordinates of the midpoint of each diagonal. What do you notice?

\[
\text{KP midpoint } K:\left(\frac{4 + (-6)}{2}, \frac{1 + (-4)}{2}\right) = \left(-1, -\frac{3}{2}\right)
\]
\[
\text{WM midpoint } W:\left(\frac{-2 + 2}{2}, \frac{3 + (-5)}{2}\right) = (0, -1)
\]

11. Find the lengths of the diagonals of PWKM. What do you notice?

\[
KP = \sqrt{(-1)^2 + \left(-\frac{3}{2}\right)^2} = \sqrt{1 + \frac{9}{4}} = \sqrt{\frac{13}{4}} = 1.18
\]
\[
WM = \sqrt{0^2 + (-1)^2} = \sqrt{1} = 1
\]

12. Find the slopes of the diagonals of PWKM. What do you notice?

\[
\text{slope } KP = \frac{-1 - (-4)}{-6 - (-4)} = \frac{-5}{-2} = -\frac{5}{2}
\]
Negative Reciprocals

\[
\text{slope } WM = \frac{-1 - 3}{0 - 2} = \frac{-4}{-2} = 2
\]
Perpendicular

13. The diagonals of ABCD create four small triangles.
Are any of these triangles congruent to any of the others? Why or why not?
\[\triangle WOP \cong \triangle MOP \text{ BY SSS} \]
\[\triangle MOK \cong \triangle WOK \]

Plot points A(1, 0), B(-1, 2), and C(2, 5).

14. Find the coordinates of a fourth point D that would make ABCD a rectangle. Justify that ABCD is a rectangle.

\[
\text{slope } AB = -1
\]
\[
\text{slope } CD = 1
\]
\[
D \left(\frac{4 + (-1)}{2}, \frac{3 + 2}{2}\right) = \left(\frac{3}{2}, \frac{5}{2}\right)
\]

15. Find the coordinates of a fourth point D that would make ABCD a parallelogram that is not also a rectangle. Justify that ABCD is a parallelogram but is not a rectangle.

\[
D \left(\frac{0 + 4}{2}, \frac{7 + 2}{2}\right) = \left(2, \frac{9}{2}\right)
\]