For possibly several well over a thousand years, mathematicians disregarded the idea of attempting to find the square root of a negative number because at the time they thought it was absurd and useless. There is no “real” number that when multiplied by itself is a negative value which makes finding something like $\sqrt{-4}$ seemingly impossible.

$$2 \cdot 2 = 4 \quad -2 \cdot -2 = 4 \quad 0 \cdot 0 = 0 \quad -1 \cdot -1 = 1$$

According to some references the first written suggestion of attempting to find the square root of a negative number may have dated all the way back to 50 A.D when Heron of Alexandria was trying to determine the volume of an impossible section of the pyramid.

The first substantial noted works about finding the square root of a negative number didn’t appear again until the 1500’s when there was a math duel to see who could solve general cubic equations more effectively between three Italian mathematicians, Cardano and Ferrari versus Tartaglia. Ferrari was a student of Cardano and stood in for him during the duel. Cardano eventually published these findings in the Ars Magna. There was some argument as to who was first and who was better but the end result was that the solutions required taking square roots of negative numbers.

Later in the 1600’s it was Rene Descartes, considered the father of analytical geometry, that accidentally coined the term ‘imaginary’ to represent the number $\sqrt{-1}$ as well as the standard form for complex numbers of $a + b\sqrt{-1}$.

Finally, it was Leonhard Euler that gave us the standard notation of i to represent the number $\sqrt{-1}$ and finalize the complex notation we use today of $a + bi$. Today, the understanding of imaginary numbers are commonly used in several engineering studies of such topics as force stresses, electrical engineering, and resonance.

1. Find all square roots of each of the following and circle the principal square root.
 a. 196 b. 1 c. 0 d. –1 e. –25

2. What does i represent? Which mathematician was the first to call the number imaginary?

 What is standard form? Which mathematician was the first to use the symbol i?

 What do you think i^2 should be? Can you explain why it MUST be defined?

3. Simplify:
 a. $i^3 =$
 b. $i^4 =$
 c. $i^{11} =$

 a. $i^3 =$
 b. $i^4 =$
 c. $i^{11} =$
4. Simplify the following:
 a. $\sqrt{-45}$
 b. $2\sqrt{-72}$

5. Add/Sub and simplifying the following and write the answer in standard form $(a + bi)$:
 a. $2i + 5i$
 b. $(3 + 5i) - (2 - 6i)$
 c. $(2 - 3i) + (8 - 2i)$

6. Add/Sub and simplifying the following and write the answer in standard form $(a + bi)$:
 a. $(3i + 5) + (6 + \sqrt{-25})$
 b. $(\sqrt{18} + \sqrt{-12}) + (4\sqrt{2} - \sqrt{-3})$

7. Mulit/Div and simplify the following:
 a. $2i \times 5i$
 c. $\sqrt{-3} \cdot \sqrt{-12}$
 d. $i\sqrt{15} \times i\sqrt{20}$
 e. $(2 + 4i)(7 - 8i)$
 f. $(3 + 4i)^2$
 g. $(3 + 5i)(3 - 5i)$

M. Winking Unit 1-4 page 10
8. What are the complex conjugates of each of the following?
 a. \((4 + 6i)\)
 b. \(8i\)
 c. 6

9. Mult/Div and simplify the following:
 b. \(\frac{10i}{6i}\)
 b. \(\frac{2 + 5i}{3i}\)
 c. \(\frac{6 - 5i}{4 - i}\)
 d. \(\frac{3 + 2i}{5 + 3i}\)
10. **Mult/Div and simplify the following:**

\[
\begin{align*}
a. \quad & \frac{-4 + 2i}{2i - 3} \\
b. \quad & \frac{6i(2 + 3i) + 3}{3i}
\end{align*}
\]

11. **Solve the following complex equations**

\[
\begin{align*}
a. \quad & 8i + 12 = (4x)i - 2y \\
b. \quad & 4(3i + 2) - 2i = (2x)i + y \\
c. \quad & 18i + 3x = (9y)i
\end{align*}
\]