Recall, \(\sin(\theta) = \frac{\text{opp}}{\text{hyp}} \), \(\csc(\theta) = \frac{\text{hyp}}{\text{opp}} \), \(\cos(\theta) = \frac{\text{adj}}{\text{hyp}} \), and \(\sec(\theta) = \frac{\text{hyp}}{\text{adj}} \). Use this to show:

\[
\frac{1}{\sin(\theta)} = \quad \frac{1}{\cos(\theta)} =
\]

Use the above relationship to help you graph \(y = \csc(x) \).

Use the above relationship to help you graph \(y = \sec(x) \).
Parts of a Tangent and Cotangent Graph

<table>
<thead>
<tr>
<th>Visual</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Graph Image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertical Stretch/Compress</th>
<th>Secant and Cosecant graphs have a vertical stretch that would be equivalent to the amplitude of their reciprocal trig function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Factor</td>
<td>[\frac{(\text{Local Max } Y) - (\text{ Local Min } Y)}{2}]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Period</th>
<th>The period of the graph is the horizontal distance of one complete cycle.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>[(\text{ Local Min } X) - (\text{ Previous Local Min } X)]</td>
</tr>
<tr>
<td>Period</td>
<td>[(\text{ Local Max } X) - (\text{ Previous Local Max } X)]</td>
</tr>
<tr>
<td>Period</td>
<td>[(\text{ Asymptote } X) - (2^{nd} \text{ Previous Asymptote } X)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase Shift (Secant)</th>
<th>The amount the graph is shifted right/ left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secant Phase Shift</td>
<td>[\text{Local Min } X]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase Shift (Cosecant)</th>
<th>The amount the graph is shifted right/ left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosecant Phase Shift</td>
<td>[\frac{\text{Local Min } X + \text{ Next Local Max } X}{2}]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertical Shift</th>
<th>The amount the graph is shifted up/down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Shift</td>
<td>[\frac{\text{Local Max } Y + \text{ Local Min } Y}{2}]</td>
</tr>
</tbody>
</table>
1. Find the parameters of each SECANT/COSECANT graph and determine a possible equation.

\[y = a \cdot \sec(b(x - c)) + d \]

\[y = a \cdot \csc(b(x - c)) + d \]

- **a** = Vertical Stretch/Compress
- **c** = Phase Shift
- **d** = Vertical Shift
- \(\frac{2\pi}{b} = \text{Period} \)

a.

![Graph a](image)

Possible Equation: (Using Cosecant)

b.

![Graph b](image)

Possible Equation: (Using Cosecant)

c.

![Graph c](image)

Possible Equation: (Using Cosecant)

d.

![Graph d](image)

Possible Equation: (Using Cosecant)
2. Find the parameters of each **SECANT/COSECANT** graph and determine a possible equation.

a.

```
Vertical :  Period:  Phase:  Vertical:
Stretch/Compress
```

Possible Equation:
(Using Cosecant)

b.

```
Vertical :  Period:  Phase:  Vertical:
Stretch/Compress
```

Possible Equation:
(Using Secant)

c.

```
Vertical :  Period:  Phase:  Vertical:
Stretch/Compress
```

Possible Equation:
(Using Cosecant)

d.

```
Vertical :  Period:  Phase:  Vertical:
Stretch/Compress
```

Possible Equation:
(Using Secant)

e.

```
Vertical :  Period:  Phase:  Vertical:
Stretch/Compress
```

Possible Equation:
(Using Secant)

f.

```
Vertical :  Period:  Phase:  Vertical:
Stretch/Compress
```

Possible Equation:
(Using Secant)
3. Find the parameters of each SECANT/COSECANT graph and determine a possible equation.

a.

\[y = 3 \sec(2x - 6) + 1 \]

b.

\[y = 0.5 \csc\left(\frac{2\pi}{3}(x + 1)\right) - 3 \]
5. Graph the following equation.

 a. \(y = 2 \csc\left(\frac{\pi}{2} (x - 1)\right) + 5 \)

 ![Graph of equation a]

 b. \(y = 2 \sec\left(2\left(x - \frac{\pi}{2}\right)\right) + 6 \)

 ![Graph of equation b]