Unit 4: Recursion Models
Sec 4.1 – Recursion Models
Recursive & Explicit

Name:

Complete the next 3 terms in the sequence and give a RECURSIVE DEFINITION
(i.e. a rule on how to go from one term to the next)

1. 2, 4, 6, 8, __________, __________, __________
 RULE:

2. 2, 4, 8, 16, 32 __________, __________, __________
 RULE:

3. 4, 12, 36, 108, __________, __________, __________
 RULE:

4. 8, 5, 2, -1, __________, __________, __________
 RULE:

5. 54, 18, 6, 2, __________, __________, __________
 RULE:

6. 4, 10, 16, 22, __________, __________, __________
 RULE:

7. 2, 7, 22, 67, __________, __________, __________
 RULE:

10. 1, 4, 9, 61, 52, 63, 94, __________, __________

11. A, __________, __________, __________, E, F, __________, H, __________,
 B, C, D, __________, __________, G

12. A, __________, __________, __________, __________, __________,
 C, E, F, G, H

13. 1
 1 1
 2 1
 1 2 1 1
 1 1 1 2 2 1

14. Each number shown below follows a certain rule. Figure out the rule and fill in the missing number.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>20</td>
</tr>
<tr>
<td>April</td>
<td>10</td>
</tr>
<tr>
<td>May</td>
<td>5</td>
</tr>
<tr>
<td>November</td>
<td>15</td>
</tr>
<tr>
<td>July</td>
<td>?</td>
</tr>
</tbody>
</table>

15. Which of the designs best completes the following sequence?

16. Which letter comes next in this series of letters?
B A C B D C E D F ?

17. Which of the figures below the line of drawings best completes the series?
Recursive functions vs. Explicit functions

Create a sequence from the following.

Recursive Definition:
\[t_{n+1} = t_n + 4 \quad \text{and} \quad t_1 = 3 \]

Create a sequence from the following.

Explicit Definition:
\[t_n = 4n - 1 \]

Find \(t_{10} \)

Find \(t_{10} \)

How would you define the following?

Recursive Definition –

Explicit Definition –

18. Create the first few terms of a sequence using the following **Recursive Definitions:**

a. \[t_{n+1} = 2 \cdot t_n - 1 \quad \text{and} \quad t_1 = 2 \]

b. \[a_{n+1} = 2^{(a_n)} - 1 \quad \text{and} \quad a_1 = 2 \]

c. \[t_n = (t_{n-1})^2 - 4 \quad \text{and} \quad t_1 = 3 \]
19. Complete the table.
\[a_n = 3 \cdot a_{n-2} - a_{n-1} - 1\]

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>an</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20. Generate 3 different sequences that could be defined by \(t_{n+1} = 2 \cdot t_n + 1\)

21. Create the first few terms of a sequence using the following *Explicit Definitions*:
 a. \(t_n = 2 \cdot n - 1\)

 b. \(a_n = 3^n - n\)

 c. \(t_n = 5 \cdot n - 4\) and determine \(t_{23}\)
22. Create the first few terms of a sequence using the following **mixed Recursive Definitions**:

a. \(a_{n+1} = n + 2 \cdot a_n - 1 \) and \(a_1 = 3 \)

b. \(t_n = 4 \cdot t_{n-2} - t_{n-1} - n \) and

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_n)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>...</td>
</tr>
</tbody>
</table>
Sec 4.2 – Recursion Models
Creating Explicit Models

Find the requested term of the sequence given the RECURSIVE or EXPLICIT definitions.
1) Determine \(t_{12} \), given that \(t_1 = 2 \) and \(t_{n+1} = t_n + 4 \)

2) Determine \(a_8 \), given that \(a_1 = 1 \) and \(a_n = 2 \cdot a_{n-1} + 1 \)

3) Determine \(t_{21} \), given that \(t_1 = 25 \) and \(t_n = 3 \cdot n^2 - 50 \)

4) Determine \(a_{14} \), given that \(a_1 = 1 \) and \(a_n = 2^n - n \)

Find the requested term number of the sequence given the RECURSIVE or EXPLICIT definitions.
5) Given that \(t_1 = 5 \) and \(t_{n+1} = 2 \cdot t_n - 3 \), determine which term of the sequence is 515.

6) Given that \(a_1 = 1 \) and \(a_n = 6 \cdot n - 5 \), determine which term of the sequence is 241.
Find the RECURSIVE & EXPLICIT definitions and then find the requested term

7) 3, 5, 7, 9, 11,

Find \(a_{42} = \) ____________

Recursive: ____________

Explicit: ____________

8) 5, 8, 11, 14,

Find \(a_{33} = \) ____________

Recursive: ____________

Explicit: ____________

9) 4, 12, 36, 108,

Find \(a_{21} = \) ____________

Recursive: ____________

Explicit: ____________
Answer the following about the pattern sequences.

10) Jessie started creating the following pattern using red square blocks. How many red squares will she need for the 12th step of the sequence?

11) Ethan started creating the following pattern using blue square blocks. How many blue squares will she need for the 8th step of the sequence?

11) Ashley started drawing several iterations of a binary tree. In each iterative step, the number of new leaves is doubled. How many new leaves will there be on the 9th step of the sequence?
1. Kevin decides to take a job with a company that sells magazine subscriptions. He is paid $20 for the day and then earns $1.50 for each subscription he sells for the day.
 a. Create a table of values showing how much he makes for each number of magazines.

<table>
<thead>
<tr>
<th>Number of subscription sold</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of pay for the day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 b. Write a recursive function for the amount of money Kevin can earn selling magazines.

 c. Write an explicit function rule for the \(n^{th} \) term in the sequence describing the amount of money Kevin can earn. Describe any domain restrictions in your rule. How is this rule related to the rule you wrote in the previous question?

 d. How much does Kevin earn if he sells 100 magazine subscriptions? Which rule did you use to answer this question? Why?

 e. Kevin is trying to earn enough money to buy a new smart phone. He needs $225 to cover the cost and tax on the phone. How many magazine subscriptions does Kevin need to sell to buy his new smart phone?

2. Your phone service allows you to add international long distance to your phone. The cost is a $5 flat fee each month and 3¢ a minute for calls made. Write a recursive rule describing your monthly cost for international calls. Then write a function rule for the \(n \) minutes of calls made in a month.
3. Alex started a business making bracelets. She sold 30 bracelets the first month. Her goal is to sell 6 more bracelets each month than she sold the previous month. If Alex meets her goal, what is the total number of bracelets she will sell in the first 12 months? How could you go about figuring this out? Can you find a formula?

4. A person was studying a population of a city and noticed that the city’s population was growing a consistent rate of 20% per year and could be modeled by the recursive definition $P_{n+1} = 1.20 \cdot P_n$. What is the growth factor?

If the population is 22,400 this year, what would the population for each of the next 3 years (assuming the population continues to follow the suggested model)?

5. A student is playing with pennies to model population growth. The student starts with 2 pennies and flips them at the same time. Another coin is added to the pile of coins for every coin that lands head up (coin flip simulator [http://www.shodor.org/interactivate/activities/Coin/]).

- What should the growth factor be in theory?
- Create a table of values showing the number of pennies after each flip?

<table>
<thead>
<tr>
<th>Flip Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pennies</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Create a recursive definition.
- Create an explicit definition.

6. A school attendance clerk noticed that the first week after winter break 5 students were out with the flu. By the end of the second week, a total of 9 students had come down with the flu at one time and by the third week 16 had the flu at one time. The attendance clerk noticed the number of students that had the flu was growing exponentially with a growth factor of 1.8.

- Create a table of values showing the number of pennies after each flip?

<table>
<thead>
<tr>
<th>Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>….</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Students that have had the flu</td>
<td>5</td>
<td>9</td>
<td>16</td>
<td>29</td>
<td>….</td>
</tr>
</tbody>
</table>

- Create a recursive definition.
- Create a explicit definition.

- If the model continues how many would have had the flu by the 8th week of school?
5. A student is playing with dice to simulate a declining population. They started with 50 dice and any dice that land on an ‘ODD’ number are removed. Then, the remaining dice are rolled and again, the dice that land on an ‘ODD’ number are removed. The process is repeated until no dice are left. (dice roll simulator https://www.random.org/dice/).

- What should the growth factor be in theory?

- Create a table of values showing the number of pennies after each flip?

<table>
<thead>
<tr>
<th>Roll Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>??</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pennies</td>
<td>50</td>
<td>≈ 25</td>
<td>≈ 13</td>
<td>...</td>
<td>≈ 0</td>
<td></td>
</tr>
</tbody>
</table>

- Create a recursive definition.

- Create an explicit definition.

6. A population starts with 16 fleas and in a day the population increases by 3 new fleas for every 4 fleas the previous day which can be shown in the following table

<table>
<thead>
<tr>
<th>Day</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Fleas</td>
<td>16</td>
<td>28</td>
<td>49</td>
<td>≈ 86</td>
<td>≈ 150</td>
</tr>
</tbody>
</table>

- What is the growth factor?

- Create a recursive definition.

- Create an explicit definition.

- If the model continues how many fleas would you predict there will be on day 9?
7. Trisha decided to start an exercise program in which on the first day she did 4 sit-ups. The next day she would do 2 more sit-ups than the previous day. She wanted to continue doing 2 more than the previous day for 10 days.

<table>
<thead>
<tr>
<th>Day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>....</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sit-Ups for the day</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>....</td>
</tr>
<tr>
<td>Total number of Sit-Ups</td>
<td>4</td>
<td>10</td>
<td>18</td>
<td>28</td>
<td>40</td>
<td>....</td>
</tr>
</tbody>
</table>

- What type of sequence does the number of sit-ups each day create?
- How many sit-ups will she have done by the end of the 10 days?
- Could you use your technique to find how many sit-ups she would have done if she did this for 20 days?

8. Jason started a new job in which the employer required that he put $120 into a retirement fund each month. The company would also add 1% of the amount in his retirement fund each month.

<table>
<thead>
<tr>
<th>Month</th>
<th>m₁</th>
<th>m₂</th>
<th>m₃</th>
<th>m₄</th>
<th>m₅</th>
<th>m₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account Balance</td>
<td>0</td>
<td>$120</td>
<td>$241.20</td>
<td>$363.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% interest earned</td>
<td>0</td>
<td>$1.20</td>
<td>$2.41</td>
<td>$3.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Money added</td>
<td>$120</td>
<td>$120</td>
<td>$120</td>
<td>$120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- How much money will be in his retirement account at the end of 6 months?