Find the requested term of the sequence given the RECURSIVE or EXPLICIT definitions.

1) Determine \(t_{12}\), given that \(t_1 = 2\) and \(t_{n+1} = t_n + 4\)

\[
\begin{align*}
\text{Ans} + 4 & \quad 2 \times t_1 \\
5 & \quad = t_2 \\
10 & \quad = t_3 \\
14 & \quad = t_4 \\
18 & \quad = t_5
\end{align*}
\]

\(t_{12} = 46\)

2) Determine \(a_8\), given that \(a_1 = 1\) and \(a_n = 2 \cdot a_{n-1} + 1\)

\[
\begin{align*}
2 & \quad = a_1 \\
2 \times \text{Ans} + 1 & \quad = 16 \\
5 & \quad = a_2 \\
11 & \quad = a_3 \\
23 & \quad = a_4 \\
47 & \quad = a_5
\end{align*}
\]

\(a_8 = 382\)

3) Determine \(t_{21}\), given that \(t_1 = 25\) and \(t_n = 3 \cdot n^2 - 50\)

\[
\begin{align*}
\text{N} = 21 & \quad t_{21} = 3 \cdot (21)^2 - 50 \\
& \quad = 1273
\end{align*}
\]

\(t_{21} = 1273\)

4) Determine \(a_{14}\), given that \(a_1 = 1\) and \(a_n = 2^n - n\)

\[
\begin{align*}
2^{14} & \quad = a_{14} \\
16370 & \quad = a_{14}
\end{align*}
\]

\(a_{14} = 16370\)

Find the requested term number of the sequence given the RECURSIVE or EXPLICIT definitions.

5) Given that \(t_1 = 5\) and \(t_{n+1} = 2 \cdot t_n - 3\), determine which term of the sequence is 515.

\[
\begin{align*}
5 & \quad = t_1 \\
2 \times \text{Ans} - 3 & \quad = 131 \\
7 & \quad = t_2 \\
19 & \quad = t_3 \\
35 & \quad = t_4 \\
67 & \quad = t_5
\end{align*}
\]

515 is the 9th term

6) Given that \(a_1 = 1\) and \(a_n = 6 \cdot n - 5\), determine which term of the sequence is 241.

\[
\begin{align*}
\frac{241 = 6n - 5 \quad +5 \quad + 5}{\frac{246 = 6n}{6}} \quad \frac{41 = n}
\end{align*}
\]

241 is the 41st term
Find the RECURSIVE & EXPLICIT definitions and then find the requested term

7) \(3, 5, 7, 9, 11, \ldots\)

- **Recursive:**
 \[a_{n+1} = a_n + 2\]

- **Explicit:**
 \[a_n = 3 + (n-1)2\]

8) \(5, 8, 11, 14, \ldots\)

- **Recursive:**
 \[a_{n+1} = a_n + 3\]

- **Explicit:**
 \[a_n = 5 + (n-1)3\]

9) \(4, 12, 36, 108, \ldots\)

- **Recursive:**
 \[a_{n+1} = 3a_n\]

- **Explicit:**
 \[a_n = 4 \cdot 3^{n-1}\]
Answer the following about the pattern sequences.

10) Jessie started creating the following pattern using red square blocks. How many red squares will she need for the 12th step of the sequence?

\begin{align*}
&\text{Recursive Definition: } a_{n+1} = a_n + 2 \\
&\text{Explicit Definition: } a_n = 1 + (n-1)2
\end{align*}

11) Ethan started creating the following pattern using blue square blocks. How many blue squares will she need for the 8th step of the sequence?

\begin{align*}
&\text{Recursive Definition: } a_{n+1} = 3 \cdot a_n \\
&\text{Explicit Definition: } a_n = 1 \cdot 3^{n-1}
\end{align*}

11) Ashley started drawing several iterations of a binary tree. In each iterative step, the number of new leaves is doubled. How many new leaves will there be on the 9th step of the sequence?

\begin{align*}
&\text{Recursive Definition: } a_{n+1} = 2 \cdot a_n \\
&\text{Explicit Definition: } a_n = 1 \cdot 2^{n-1}
\end{align*}