1. Rewrite the following exponential statements as logarithmic statements. \((\text{EXP} \rightarrow \text{LOG})\)

 a. \(125 = 5^3\)
 b. \(2^6 = 64\)
 c. \(4^x = 16\)

 d. \(243 = x^5\)
 e. \(e^x = 9\)
 f. \(x = e^5\)

2. Rewrite the following logarithmic statements as exponential statements. \((\text{LOG} \rightarrow \text{EXP})\)

 a. \(3 = \log_2(8)\)
 b. \(5 = \log_x(243)\)
 c. \(\log_6(x) = 3\)

 d. \(\ln(x) = 5\)
 e. \(\log_4(256) = 2x\)
 f. \(x = \ln(3)\)
3. Evaluate the following basic logarithm statements.
 a. $\log_2(32)$
 b. $\log_7(49)$
 c. $\log_6(6)$
 d. $\log_4(256)$
 e. $\log(1000)$
 f. $\ln(e^7)$

4. Evaluate the following logarithm statements.
 a. $\log_5(5^{12})$
 b. $(\log_3(3^x))^2$
 c. $\log_3(9^3)$
 d. $\log_2(16^5)$
 e. $4^{\log_4(16)}$
 f. $3^{\log_3(81)}$
 d. $5^{\log_5(12)}$
 e. $4^{\log_4(32)}$
 f. $e^{\ln(5x)}$
Evaluate the following using the prime factorization of 9^4.

\[\log_3(9^4) \]

Evaluate the following using a recognized property.

\[\log_3(9^4) \]

5. Rewrite each of the following using the property above.
 a. \(\log_5(25^3) \)
 b. \(\log_2(14^5) \)
 c. \(\ln(9^3) \)

Evaluate the following with your calculator by changing the base to 3 decimal places
 (show the work to provide reasoning)

\[\log_2 9 = x \]

6. Evaluate the following with your calculator by changing the base to 3 decimal places
 a. \(\log_5(50) \)
 b. \(\log_8(12) \)
 c. \(\log_4(4194304) \)

 d. \(\log_3(212) \)
 e. \(\log(532) \)
 f. \(\ln(28) \)